
Copiloting Autonomous Multi-Robot Missions:
A Game-Inspired Supervisory Control Interface*

Marcel Kaufmann,1,2 Robert Trybula,3 Ryan Stonebraker,2 Michael Milano,2 Gustavo J. Correa,4
Tiago S. Vaquero,2 Kyohei Otsu,2 Ali-akbar Agha-mohammadi,2 and Giovanni Beltrame1

1Polytechnique Montreal
H3T 1J4 Montreal, QC, Canada

2Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA 91109, USA

3University of Southern California
Los Angeles, CA 90007, USA

4University of California Riverside
Riverside, CA 92521, USA

Abstract

Real-world deployment of new technology and capabilities
can be daunting. The recent DARPA Subterranean (SubT)
Challenge, for instance, aimed at the advancement of robotic
platforms and autonomy capabilities in three one-year devel-
opment pushes. While multi-agent systems are traditionally
deployed in controlled and structured environments that al-
low for controlled testing (e.g., warehouses), the SubT chal-
lenge targeted various types of unknown underground envi-
ronments that imposed the risk of robot loss in the case of
failure. In this work, we introduce a video game-inspired
interface, an autonomous mission assistant and test and de-
ploy these using a heterogeneous multi-agent system in chal-
lenging environments. This work leads to improved human-
supervisory control for a multi-agent system reducing over-
head from application switching, task planning, execution,
and verification while increasing available exploration time
with this human-autonomy teaming platform.

Introduction
Autonomous Exploration and SubT: Robotic exploration
and the advancement of autonomy offer new ways to ex-
plore potentially dangerous and hard-to-access underground
environments. Multi-agent systems have matured in con-
trolled and structured environments like warehouses, facto-
ries, and laboratories, while current robotic challenges seek
to advance these technologies for search and rescue sce-
narios, planetary prospecting, and subsurface exploration
(Asada et al. 2019; Hambuchen et al. 2017; Link and Lamb-
oray 2021). Motivated by the search for life on other plan-
ets, NASA JPL’s team CoSTAR (Agha et al. 2021) took
part in the Defense Advanced Research Projects Agency’s

*This work has originally been submitted to the IEEE Robotics
and Automation Letters (RA-L). Currently under review.
Copyright © 2022. All rights reserved.

(DARPA) Subterranean Challenge (SubT) seeking to ad-
vance robotic multi-agent systems and their technology
readiness for potential future missions. If brought to other
planets (e.g. Mars), subsurface missions could bring new in-
sights into their geologic past as well as on their potential
for supporting life in the environmentally protected under-
grounds (Titus et al. 2021). In contrast to traditional ex-
ploration missions where a team of operators and scien-
tists controls one rover, SubT introduced the challenging re-
quirement that only a single human supervisor can directly
interface with the deployed multi-agent team in real-time
and when a communication link is established. SubT is di-
vided into three, one year development pushes with major
field testing demonstrations. This work focuses on the ad-
vancements in our supervisor autonomy and game-inspired
user interface that were developed under the restrictions of
a worldwide pandemic and deployed during the SubT final
competition comprising two preliminary missions (P1 and
P2) and the final prize run (F).

Human-Robot Collaboration: Achieving man-
computer symbiosis (Licklider 1960) has been a long-time
goal of the community to promote a close coupling of
human and machine capabilities and ultimately inspire the
evolving field of human-robot interaction (Chen and Barnes
2021). This work improves collaborative human multi-robot
exploration and search performance fusing our extended
autonomy assistant Copilot (Kaufmann et al. 2021) that
uses automated planning techniques with a game-inspired
interface design for effective robot deployment, operations,
and single operator supervision to create a more symbiotic
interaction.

We present key design choices that are breaking away
from common robot interfacing strategies that were de-
ployed in similar challenge contexts (Kohlbrecher et al.
2015; Tranzatto et al. 2022) and used interfaces based on the



Figure 1: Team CoSTAR’s Mission Control user interface
(A). (B) a subset of CoSTAR’s ground robots showing four
customized Boston Dynamic’s Spot and Clearpath Husky
powered by JPL’s autonomy platform NeBULA. Typically
a deployment of 4 to 6 ground vehicles was targeted during
SubT, but the number of agents is extendable (e.g., see A
with 11 robots).

Robot Operating System’s (ROS) visualization tool RViz.
Further, we leverage human-robot interdependencies to in-
form the design and development of supervised autonomy
and interaction paradigms to achieve our set interaction ob-
jectives. The latest results from the SubT competition “Fi-
nals” are compared to a baseline from previous compe-
tition runs, namely the “Urban Circuit”, which deployed
earlier interface and system implementations and interac-
tion paradigms that we improve with our combined game-
inspired interface and enhanced supervisory autonomy.

Related Work
Human-Robot Interaction and Interface Design: More
than sixty years after the introduction of man-computer sym-
biosis by Licklider (Licklider 1960), Chen and Barnes (Chen
and Barnes 2021) conclude that the boundaries of long-term
human-robot symbiosis are still to be pushed by interdisci-
plinary collaborations. Szafir and Szafir (Szafir and Szafir
2021) have identified best practices in the field of data visu-
alization as a key driver to advance both HRI and data vi-
sualization. Complex visualizations and renderings have be-
come achievable with off-the-shelf hardware, which allows
the integration of visualization principles such as sensemak-
ing (Szafir and Szafir 2021) that helps a human digest in-
formation. In human-space systems Rahmani et al. (Rah-
mani et al. 2019) identified that interface technologies are
currently in development, but their technology readiness
levels are not very mature. Multiple design methods have

been introduced in the literature, for instance, Coactive De-
sign (Johnson et al. 2014) which is a structured approach to
analyze human and robot requirements and was used in the
context of the 2015 DARPA Virtual Robotics Challenge that
aimed at advancing disaster response capabilities. Roundtree
et al. (Roundtree et al. 2019) found that abstract interface
designs that visualize collective status over single agent in-
formation could increase performance; however such de-
signs depend on the task at hand, team size and mission
goals (Chen and Barnes 2021). A common testing strat-
egy in computer game development is Playtesting (Wall-
ner, Halabi, and Mirza-Babaei 2019), which is comparable
to simulation and field testing in the multi-robot domain.
The game-inspired development technique RITE, which was
introduced in the context of interface development for the
computer game Age of Empires (Medlock et al. 2002), was
used and adapted for fast development sprints. Additionally,
we drew inspiration from real-time strategy games like Age
of Empires, which guided the design of the 3D portion of the
interface.

Robot Challenge Interfaces: During 2013’s DARPA
Robotics Challenge, team ViGIR leveraged ROS to control a
humanoid robot. The team decided to implement their inter-
faces using RViz and built an Operation Control Center con-
sisting of at least six screens. Robot challenges are found
to typically influence human-robot interaction design and
interfaces (Szafir and Szafir 2021) and for DARPA’s SubT
teams, the common design practice was based on RViz and
ROS plugins ((Hudson et al. 2021; Ohradzansky et al. 2021;
Scherer et al. 2021; Roucek et al. 2021; Tranzatto et al.
2022)). Even our team started off using RViz as a quick way
to prototype interfaces (Otsu et al. 2020) and used it as the
main way to interact with the robot agents due to its tight
integration with ROS and ability to access robot data for de-
bugging purposes. We shifted away from this approach for
the final competition, and the resulting HRI modalities and
supervisory interface are presented in this work.

Background and Objectives
Challenge Requirements: The overall SubT goals are two
common problems faced by real-world multi-agent systems:
first, the autonomous exploration of unknown environments,
and second, the search for objects of interest hidden within.
While exploration and search provide a need for specific ca-
pabilities, DARPA further introduced a set of guidelines and
rules to motivate higher levels of autonomy for the deployed
systems: (i) only a single human operator is allowed to in-
teract, supervise, and interface with the robots; (ii) each mis-
sion is bound by a fixed setup time limit of 30 minutes and
an exploration time limit between 30 and 60 minutes; (iii) a
pit crew of four (Finals) or nine (Urban Circuit) can sup-
port the supervisor by setting up hardware in a designated
area without access to wireless data streams, robot control,
or interface; (iv) there is a limited number of attempts to
submit discovered objects of interest; (v) the final challenge
environment comprises tunnel, urban, and cave terrains to be
explored.

Objectives: Deploying and operating large teams of
robots like Team CoSTAR’s robot fleet, shown in Figure



1B, are complex real-world problems. Addressing this set of
problems creates the need for a resource-efficient and robust
human and multi-agent system to i) not overwhelm the sin-
gle human supervisor, ii) meet the timing requirements, and
iii) increase the performance of both exploration and search
tasks.

To tackle this challenge and develop a system that can de-
ploy reliably even beyond the SubT challenge, we embed
the following interaction objectives into our system design:
(1) Reducing overhead and human workload (e.g., from ap-
plication switching and manual task execution) (2) Creating
and maintaining situational awareness (3) Managing large
teams of robots (from setup, deployment to exploration)
while allowing for a flexible configuration (4) Accessing
critical information in a single unified interface (5) Main-
taining an enjoyable performance that can visualize the com-
plete robot team (6) Collaborating with autonomy and trust-
ing automation.

Supervised Autonomy
Copilot
Motivation: After SubT’s “Urban Circuit”, the allowed per-
sonnel in the competition staging area was reduced from ten
to five team members which includes the main supervisor.
This required a shift in how robots were strategically and
physically handled (minimum 2 people are needed to lift and
stage a single robot). Task coordination was done by a pit
crew member directing the operator and influencing their ac-
tions while following static paper checklist procedures. De-
veloping and deploying a computerized assistant that could
take over this role was soon desired.

Original Implementation: A first version of Copilot, “an
autonomous assistant for human-in-the-loop multi-robot op-
erations” was introduced in (Kaufmann et al. 2021). This
early Copilot was only tested in realistic cave simulations or
during preparatory missions with one deployed robot. Copi-
lot supports a single human supervisor in monitoring robot
teams, aids with strategic task planning, scheduling, and ex-
ecution, and communicates high-level commands between
agents and a human supervisor if a communication link ex-
ists. The autonomy assistant aims at keeping workload ac-
ceptable while maintaining high situational awareness that
allows rapid responses in case system failures are observed.

Task Interaction: Copilot takes over the decision-
making processes regarding planning and scheduling, which
reduces the need to memorize tasks and task sequences
or the need to delegate a team member to take over such
checklist-like tasks. Some tasks were implemented with
higher autonomy levels and automatically executed limited
actions, but most required the human to start the task, man-
ually execute parts of it, and confirm that the task had been
completed successfully or unsuccessfully while monitoring
the system. On one hand, it reduced the need to remember
tasks; on the other hand, more interactions with the newly
introduced system were needed.

Scalability Limitations: Due to computational limita-
tions, a full mission simulation could not be achieved with
more than three robots at reduced real-time and not more

Figure 2: Copilot’s task management architecture. Auto-
generator, Planner, and Executor have been added or updated
and access a centralized task database which stores pending,
active, successful, or failed tasks.

than two in real-time. However, upon tightly integrating
Copilot with multiple real robot platforms, we noticed that
the current concept of operations didn’t scale well when
adding more robots to a mission. We learned that task exe-
cution on the real hardware requires different timing and in-
troduces many sources for machine and human errors (e.g.,
if cables are loose, sensors don’t power up, or unknown un-
knowns occur).

Visualization Limitations: In robotics interfaces,
scheduling, and timeline views are often presented in a
robot- or task-centric way, focusing on who or which agent
is scheduled for a certain task and when, respectively (Bae
et al. 2020). The main task-centric approach that was used
in early Copilot tests showed a vertical list view with a
scrollable timeline. This timeline showed the four tasks
closest in time on top. As the number of tasks scaled linearly
with the number of deployed robots this list view became
inefficient — especially when tasks had to be deferred and
worked on in a non-sequential order.

Improved Copilot
The identified shortcomings motivated a redesigning and re-
thinking of Copilot’s back-end and front-end to reduce and
not just shift workload; thus, we implemented higher levels
of automation.

Architecture Changes: Figure 2 provides a simplified
overview of Copilot’s updated task management architec-
ture. A multi-robot task auto-generator and verifiable task
executor have been added to the system, and the underly-
ing planner has been replaced. All modules access a central-
ized task database which stores pending, active, successful,
or failed mission tasks for setup, deployment, and during ex-
ploration.

Task Dependency Graph: A robot mission can be fairly
complex, even when looking at the deployment of a single
robot. In Figure 3 such a single robot mission is shown as a
directed graph indicating the temporal constraints and exe-
cution dependencies with arcs between the nodes that repre-
sent a pre-defined set of mission tasks. Each task is defined
by its duration, earliest start time, latest end time, and its
dependency relations with other tasks.

To deploy multiple robots without the need to hard-coding
all possible agent combinations and graphs, we use a scal-
able auto generator. The preceding superscript O in the
graph (see Figure 3) indicates that human inputs or actions
are required for the task. In the case of the Launch base
software task, this means that the operator has to initiate
the software launch as a pre-condition and is prompted to



Figure 3: Pre-defined Copilot tasks for a single robot mission
indicating task dependencies. The number of tasks scales
linearly with the number of deployed robots. Spot1 related
tasks are depicted in blue and operator tasks in orange. A
superscript O or P at the beginning of a task indicate that
the operator or pit crew has to manually fulfill some pre-
condition. A superscript at the end indicates that a human
sign-off is implemented before proceeding with the next
task. For instance “Power on robot platform” requires a
physical push of the robot platform startup button.

select the robots that they would like to deploy for the up-
coming mission. Similarly, superscripts at the end of a task
indicate that human action is needed before the next task
can begin. Tasks without either have been fully automated
for nominal cases in this newer Copilot version.

Task Planning and Scheduling: The aforementioned
task dependency graph for the selected robots forms the in-
put for Copilot’s task planner and is stored in the MongoDB
task database. The generation of a task plan for setting up,
deploying, and assisting the operator during exploration is
framed as an automated temporal planning problem. In the
first version of Copilot, we formulated such problem as a
Simple Temporal Network (STN), encoded as a linear pro-
gram. In the improved version of Copilot, deployed in the
final events of SubT, we moved to a PDDL temporal plan-
ning formulation to allow 1) flexibility on task representa-
tion with respect to state constraints, resources, and plan-
ning, and 2) use the body of planners available in the lit-
erature. Herein we integrated the OPTIC planner (Benton,
Coles, and Coles 2012), a PDDL temporal planner that han-
dles time window specification (timed initial literals), and
discrete and continuous resources.

To perform planning, OPTIC uses both a PDDL domain
file and a problem file. The domain file has been designed to
represent tasks (modelled as operators) and its dependencies
(preconditions). The problem file is generated prior to call-
ing the planner, and it is built based on the current state of
mission and tasks execution. For example, if a task is ongo-
ing, the PPDL file would represent the task as ongoing and
add constraints to ensure it continues the execution to meet
the necessary constraints. As a notional example of the scale

of the planning problem, a mission with four robots would
have approximately 60 tasks to be scheduled during setup
and deployment. Planning is performed at a predefined ca-
dence (e.g., every 1.5 seconds), but it also follows an event-
based approach when task execution is late, or the human-
in-the-loop changes their strategy — this helps mitigate ex-
ecution uncertainty. The generated plan is parsed and stored
in a Task Database (for logging and visualization across the
system); each task is then dispatched for execution.

If a plan is not found by OPTIC due to temporal constraint
violations (e.g., delays in task execution), Copilot will at-
tempt to increasingly relax some of the key temporal con-
straints, such as the latest end time of certain activities (e.g.,
allowing setup tasks to end a few minutes after the setup
time, overlapping with the beginning of the exploration time
window). In critical scenarios, Copilot would notify the op-
erator of a schedule relaxation to allow for further strategy
changes.

Task Verification and Execution: A verifiable and
generic task framework is introduced to Copilot, allowing
for quick implementations and standardized task automa-
tion. Each task follows a strict precondition, execution, and
post-condition template. Condition checks and execution
can be triggered across agents, including the base station at
which the human can oversee all automated processes at a
high level in the new Copilot interface, which is described in
Section: Game-Inspired Interface. The task template execu-
tion covers both fully automated tasks and semi-automated
tasks where an operator’s confirmation is required (e.g. de-
ploying a robot into a cave requires a Go/No-go decision
from the supervisor — deploying itself is an automated
process). If a task fails during execution or post-condition
checking, Copilot will try to resolve the issue by retrying
tasks several times and allowing for more execution time.
Failed tasks will be reported to the supervisor, who can
choose to debug the issue at hand or trigger another auto-
mated retry. Retries and resets are possible at all levels, and
completed tasks can be reset during an active mission in case
a robot platform has to be rebooted.

Game-Inspired Interface
Game Inspiration: Inspiration for multi-agent interaction
and interface design is partially drawn from real-time strat-
egy games such as Age of Empires, StarCraft, and Com-
mand & Conquer. When played competitively, these games
require a high sense of micro and macro-management of
units and their environment and the ability to efficiently
switch between these two ways of managing a team. Mi-
cromanagement involves short-term strategy and decision-
making, where individual units may require critical attention
to win a battle, overcome an obstacle, or navigate to the next
point of interest, while macromanagement refers to longer-
term strategizing that involves resource gathering, unit pro-
duction over time, and overall exploration and control of the
map (Khan et al. 2018). Parallels can be applied to the man-
agement of a robot team in the SubT competition. Even au-
tonomous robots can benefit from or require human inter-
vention and commanding, especially if critical attention to-
wards failing subsystems is needed. Supervised multi-agent




